
State of OSG
Technology

Brian Bockelman
OSG AHM 2017

Simplify,  
Simplify,  
Simplify

A Simpler, Kinder OSG
• Remember when OSG packaged its own MySQL? Python?

• OSG no longer re-packages system components.

• Each release series, we remove about 25% of our
software. Year-over-year, this means impressive gains!

• A less complicated software stack increases the available
effort for other OSG improvements!

• This is especially true when retiring “orphan software” -
that with a dead or “mostly dead” upstream where OSG
takes on the support costs.

Year of the Retirements!
• Somewhat unexpectedly, many of our (software) friends have been retiring

en masse:

• GRAM: Already gone from most sites for about a year.

• glexec: To be replaced by a new component.

• GIP/BDII: Replacement (OSG Collector) already integrated into
HTCondor-CE. You haven’t used this in awhile.

• Gratia (central-only): Move from a monolithic MySQL database at FNAL
to a decentralized architecture. Database is ElasticSearch at Nebraska.

• bestman2: Replaced by load-balanced GridFTP.

• Ideally, retiring components frees up your time to do other things!

OSG, Then And Now
• About to start packaging with

RPMs.

• Users submit jobs to the CE.

• CE based on Globus GRAM

• Info services based on GIP/
CEMon/BDII

• Storage Element model based
on SRM.

• NFS for software distribution

• Experts at RPMs packaging.

• Users submit jobs to pilot-
based systems.

• CE based on HTCondor-CE.

• Info services based on
condor_collector.

• Active investigations to cache-
based models.

• CVMFS for software.

We aren’t done yet!
• I spent time reading the 2012 OSG proposal and am proud of how many of our

original goals were achieved.

• I want to use my time today to outline how we’re trying to continue this theme of
“simplification” over the the next two years. Areas for improvement:

• OSG CE

• Runtime environment

• The VO “zoo”

• Authorization

• Storage and data management

• Monitoring

Simplify the CE
• Retiring the GIP is a marginal decrease in total effort required to run a CE.

• Some sites are retiring the CE itself:

• The BOSCO technology allows the OSG to host the CE on a VM run by
OSG Operations.

• The only site requirement is a password-less SSH connection to a site
submit host.

• Great option for less-complex & new sites.

• Delegates the work to the OSG but also delegates the policy management.

• In the meantime, we continue to chip away at any remaining rough edges in
the HTCondor-CE.

Simplify the Runtime
Environment

• We want simple isolation: Protect pilot from payloads and
payloads from each other. Specifically:

• File isolation: pilot determines what files the payloads can read
and write.

• Process isolation: payload can only interact with (see, signal,
trace) its own processes.

• There are other kinds of isolation (e.g., resource management,
kernel isolation, network isolation) that are useful but not
required.

• Homogeneous / portable OS environments: Make user OS
environment as minimal and identical as possible.

Current approach? Singularity

What is Singularity?
• Singularity is a container solution tailored for the HPC

use case.

• It allows for a portable of OS runtime
environments.

• It can provide isolation needed by CMS.

• Simple isolation: Singularity does not do resource
management (i.e., limiting memory use), leaving that
to the batch system.

• Operations: No daemons, no UID switching; no
edits to config file needed. “Install RPM and done.”

• Goal: User has no additional privileges by being
inside container. E.g., disables all setuid binaries
inside the container.

http://singularity.lbl.gov

http://singularity.lbl.gov

Who is in a container?
• Three options when using

containers:

• A: Batch system starts pilot
inside a container.

• B: Pilot starts each payload
inside its own container.

• C: Combine A and B.

• Option A does not meet our
isolation goals. Option B does.

• It is important to allow sites to
do their container work: must
keep option C viable!

Payload

Site Batch System

Pilot

Payload

Container

Site Batch System
Pilot

Option A:

Payload Payload

Option B:

Container Container

View From the Payload
Site Batch System

Pilot

Singularity

User Payload
only sees these processes

View From the Worker Node
Site Batch System

User Payload
only sees these processes

User jobs are isolated from each other,
but it’s still a familiar environment

Simplifying the VO Zoo
• Setting up a classic VO is hard: Why would you do that?

• Policy enforcement: sites can enforce policies specific to a VO; VOs can directly
manage their share of resources.

• Isolation: you do not want other VOs to interfere with your payloads.

• Singularity is one mechanism to provide isolation without needing a separate VO.

• In general, policy enforcement is difficult. However, we have tools for many simple policies!

• Particularly, cases where site is “owned” by a single VO and everything else is
opportunistic.

• The “support matrix” has (# VOs) * (# site) entries. Decreasing number of distinct VOs as
seen by the CE saves effort overall. Do you really need to submit your own pilots?

• Default GUMS template is 2,000 lines of XML and authorizes about 20,000 users at
the CE. We can do much better!

Looking forward to working with the community!

OSG Authz Overhaul
• OSG is in the process of overhauling the authorization system.

OSG’s short-term goal is to replace edg-mkgridmap.

• Longer-term, OSG wants to drop GUMS. Sticking point: pool
accounts on storage.

• Pool accounts on worker nodes are not needed once glexec is
retired.

• I am in discussion with CMS security to determine whether pool
accounts are actually needed. Currently, they only are required for
protections in /store/temp/user.

• Assuming “no,” one could retire GUMS this year. More likely:
2018.

OSG Authz Overhaul
• OSG authorization would primarily consist of two files:

• grid-mapfile: site manual mapping of local user’s DN.

• voms-mapfile: mapping of VOMS FQAN to a local
username.

• OSG will ship a starter template.

• Site would be responsible to synchronize these files across
services using Puppet/Chef/Ansible.

• There are a few other components (banning DNs), but things are
still “synchronize a few simple policy files.”

(Web) Authentication
Modernization

• Death to user certificates! (Well, in the browser)

• OSG is working on upgrades to our web properties to eliminate
the use of certificates to login.

• Goal: login is done with your university ID.

• OSG does not want to get in the business of maintaining
usernames and passwords.

• “No user certificates” goal applies to sysadmins and OSG users.

• Likely approach: use CILogon to handle the authentication
infrastructure pieces.

Opportunistic “Storage”
• For about 8 years, OSG tried to make opportunistic storage

(elements) happen:

• Opportunistic computing is like filling empty seats on an
airplane: it was going to fly regardless.

• Opportunistic storage is like real estate: you don’t give it
away!

• Indeed, we lack the tools to allocate, manage, and utilize
storage.

• About two years ago, we shifted gears: focused on cache-
based models instead of opportunistic storage.

It’s all about storage
management, stupid!

•  We	do	not	have	tools	to	manage	storage	alloca1ons		
•  We	do	not	have	tools	to	schedule	storage	
alloca1ons	

•  We	do	not	have	protocols	to	request	alloca1on	of	
storage		

•  We	do	not	have	means	to	deal	with	“sorry	no	
storage	available	now”	

•  We	do	not	know	how	to	manage,	use	and	reclaim	
opportunis1c	storage	

•  We	do	not	know	how	to	budget	for	storage	space	
•  We	do	not	know	how	to	schedule	access	to	storage	
devices	

Allocate	B	bytes	for	T	1me	units	

StashCache in 2017
• StashCache is our data caching infrastructure.

Relies on volunteer sites to run caching
servers distributed .

• Prevents VO from having to scale their own
storage services if they have cache-
friendly workflows.

• In 2016, we saw VOs use hundreds of
terabytes a week.

• Multiple VOs use the StashCache
infrastructure to distribute data through
CVMFS.

• LIGO uses this to securely distribute their
physics data.

OSG Data
Federation

OSG-XD
Source

OSG-Connect
Source

IF
Source

GLOW
Source

OSG
Redirector

Caching
Proxy

Caching
Proxy

Caching
Proxy

Caching
Proxy

Job
Job

Job

Download
Redirect

Discovery

Future Topics: Monitoring
• Looking forward to next year, monitoring is in a sad state:

• The existing tool, RSV, is OSG-specific. Does not have many features found
in popular monitoring solutions. (It does have a few features unique to
OSG!).

• The probes often don’t answer the question “Is my site working?”

• Approach future: Embed monitoring into the services themselves.

• CE will report whether it is correctly configured.

• GlideinWMS factory will report whether pilots are successful.

• GridFTP (or XRootD) servers will self-test.

• Continue to aggregate service data centrally — but nothing for sites to run!

Areas Ignored
• Giving a status talk about OSG Technology is impossibly broad. To

deliver on the topic of simplicity, I skipped out on:

• Maintenance of a broad range of “orphaned” software.

• Slow and steady improvement of difficult services - Network
Archive, OASIS.

• Upcoming major HDFS upgrade this year.

• The fact we release software every month like clockwork.

• These all take - or will take - immense effort and talent to pull off!

• Thank you to all the teams involved!

Parting Shots
• Simplify, simplify, simplify: We are decreasing the “OSG footprint” at

sites.

• For the most part, this has meant retiring components with
duplicate or marginal functionality.

• In at least one case - Singularity - this means supporting a new
piece of software.

• Innovation is disruptive! I realize that, despite best efforts,
“simplification” has often caused significant upfront work, sweat,
and tears.

• THANK YOU for remaining with us and contributing to the
community!

